Чем опасен искусственный интеллект и стоит ли его бояться
«Ридус» побеседовал со специалистом по методам машинного обучения Сергеем Марковым, который рассказал, чем полезен и чем опасен искусственный интеллект.
Искусственный интеллект (ИИ) — тема, которая уже давно не сходит со страниц научно-популярных журналов и постоянно затрагивается в кино и книгах. Чем больше специалисты развивают эту область науки, тем большими мифами она покрывается. Развитие и будущее искусственного интеллекта волнует и тех, кто стоит у руля государства. Не так давно президент РФ Владимир Путин посетил офис Яндекса в день 20-летия компании, где ему объяснили, когда ИИ превзойдет человеческий интеллект. Все, кто хоть немного проникает в суть потенциала искусственного интеллекта, понимают, что оставлять без внимания эту тему нельзя. Это не только важная тема для обсуждения, но и, наверное, одна из самых значимых в контексте будущего.
Что такое искусственный интеллект и чего на самом деле боятся люди, рассказал «Ридусу» специалист по методам машинного обучения Сергей Марков. Как говорил Джон Маккарти, изобретатель термина «искусственный интеллект» в 1956 году, «как только он заработал, никто больше не называет его ИИ». ИИ уже во всю реальность: калькуляторы, Siri, самоуправляемые автомобили и т. д., а в него все равно не верят. Почему так происходит, что люди отрицают существование ИИ? — Главным образом, по причине терминологической путаницы, так как разные люди вкладывают в понятие «искусственный интеллект» совершенно разный смысл.
В науке искусственным интеллектом называют систему, предназначенную для автоматизации решения интеллектуальных задач. В свою очередь, под «интеллектуальной задачей» понимают такую задачу, которую люди решают при помощи своего, естественного интеллекта.
Легко заметить, что такое определение искусственного интеллекта чрезвычайно широко — под него попадает даже обычный калькулятор, т. к. арифметические задачи по сути тоже интеллектуальные, человек решает их при помощи своего интеллекта.
Поэтому внутри понятия «искусственный интеллект» была проведена важная граница, отличающая прикладной или, как ещё говорят, «слабый» искусственный интеллект, предназначенный для решения какой-либо одной интеллектуальной задачи или небольшого их множества, от гипотетического сильного ИИ, также называемого универсальным искусственным интеллектом (англ. — Artificial general intelligence).
Такая система, когда она будет создана, будет способна решать неограниченно широкий круг интеллектуальных задач, подобно интеллекту человека. С этой точки зрения, калькулятор, который способен считать куда быстрее человека, или программа, выигрывающая у человека в шахматы — это прикладной ИИ, гипотетический же сверхразум будущего — сильный ИИ. Когда читаешь про разные открытия и разработки в области ИИ, понимаешь, что все в основном происходит в США или Азии. А как обстоят дела в России? Есть у нас какие-то наработки? — Область компьютерных наук в наши дни интернациональна, многие наши специалисты работают над созданием и совершенствованием различных моделей машинного обучения, в составе как российских, так и международных команд. У нас традиционно сильная математическая и алгоритмическая школа, созданы исследовательские центры мирового уровня как в ведущих вузах, так и в некоторых частных компаниях.
Но давайте говорить начистоту — бюджеты, выделяемые в нашей стране на науку и образование, не идут ни в какое сравнение с научными бюджетами наиболее развитых стран. Доходы бюджета РФ в 2016 году составили около 200 млрд долларов США, в то время, как только на оборону США тратят сумму в три раза большую, чем весь российский бюджет.
Весь бюджет российской науки сопоставим с бюджетом одного лишь вуза из Лиги плюща. В безденежные 90-е страну покинули многие ведущие специалисты, была нарушена преемственность ряда научных школ. Также было практически утрачено собственное производство электроники. В то время, как мировые лидеры ИТ ведут гонку в создании специализированных процессоров для обучения нейронных сетей, нам остаётся лишь сфера разработки алгоритмов и программного обеспечения. Впрочем, и в этой области пами были достигнуты весьма впечатляющие успехи.
Например, команда под руководством Артёма Оганова создала систему USPEX, способную предсказывать кристаллические структуры химических соединений, что привело к настоящей революции в современной химии.
Команда Владимира Махнычева и Виктора Захарова с ВМК МГУ при помощи созданной ими системы, а также суперкомпьютеров Ломоносов и IBM Blue Gene/P, впервые смогла рассчитать 7-фигурные шахматные окончания.
Нейронные сети «Яндекса» распознают и синтезируют речь, генерируют музыку в стиле «Гражданской обороны» и композитора Скрябина. Сильная команда специалистов по ИИ и машинному обучению создана и в «Сбербанке». Словом, заметные успехи есть и у нас в стране. Чем быстрее развиваются технологии искусственного интеллекта, тем сильнее людей захватывает опасение — как быстро они останутся без работы. Все действительно так плохо? По мнению председателя, уже в скором будущем мы столкнемся с ростом безработицы. Но действительно ли роботы «отберут» наши рабочие места и стоит ли беспокоиться по этому поводу рассказал «Ридусу» специалист по машинному обучению Сергей Марков. -Сергей, даже сейчас уже есть «мертвые профессии», которые не требуют человеческого труда, хотя, казалось бы, лет 10 назад никто и не думал, что, например, кондуктора скоро станут ненужными. А какие еще профессии вытеснят технологии? Мы приближаемся к тому времени, когда машины превзойдут людей почти в любом деле. Я считаю, что обществу нужно посмотреть в лицо этой проблеме до того, как она встанет во весь рост. Если машины будут способны делать почти всё, что умеют люди, что тем останется делать? сказал Моше Варди, профессор вычислительной инженерии и директор Института информационных технологий Кена Кеннеди при Университете Райса. Долгое время на пути автоматизации стояли технологические ограничения — машины не могли распознавать образы и речь, не могли говорить, не могли достаточно хорошо понимать смысл высказываний на естественном языке, не имели достаточно данных для того, чтобы научиться многим привычным для человека вещам.
Благодаря последним достижениям в сфере искусственного интеллекта многие из этих ограничений фактически оказались сняты. Кроме того, многие профессии сами претерпели трансформацию, что сделало их более удобными для автоматизации. Например, современный офисный клерк ведёт переписку не в бумажном, а в электронном виде, бухгалтер выполняет проводки не на бумаге, а в бухгалтерской программе, оператор станка управляет станком зачастую не при помощи рукоятей, а при помощи управляющей программы. Поэтому сейчас задача автоматизации во многих профессиях перестала быть научной и стала чисто инженерной. Правда пока что производственная сфера, связанная с ИИ, скорее создаёт рабочие места — нужны специалисты в области машинного обучения и подготовки данных, сотрудники для разметки обучающих массивов, специалисты по внедрению и т. д. Но в какой-то момент электроовцы определённо начнут есть людей, и о последствиях нужно позаботиться уже сейчас. При этом важно понимать, что остановить технический прогресс нельзя, и попытка это сделать обернётся куда более катастрофичными последствиями. — Мы сможем когда-нибудь полностью довериться роботам (ИИ), или все-таки в любом деле должен быть человеческий фактор? У этого вопроса есть несколько аспектов. С одной стороны, люди в прошлом с опаской относились практически к любой технике. Первый лифт, первый автомобиль, первый поезд или самолёт — всё это когда-то было непривычным, и многим казалось опасным. Да во многом опасным и было — техногенные катастрофы унесли немало жизней. И тем не менее в наши дни все эти вещи стали привычными и уже не вызывают сильного страха. В этом смысле — наши потомки будут относиться к системам ИИ более спокойно. Люди порой склонны мистифицировать вещи, которые им непонятны. Дикарь думает, что в паровозе живёт злой дух, а современный обыватель думает, что наши системы ИИ обладают сознанием, хотя это далеко не так. С другой стороны, я не думаю, что универсальные системы ИИ когда-либо станут частью нашей производственной сферы. На мой взгляд будущее скорее за синтетическими системами — то есть за объединением человека и машины в единый организм. В этом смысле искусственным интеллектом будущего будет усовершенствованный человеческий интеллект. Кстати говоря, человеческий интеллект тоже не совсем корректно называть естественным. Ребёнок от рождения не обладает интеллектом, всему его учит общество, родители, окружающая среда. В этом смысле мы с вами все по сути дела «искусственные интеллекты», и наши страхи, связанные с ИИ, во многом являются страхами перед самими собой. Последнее время многие ученые, например, Стивен Хокинг, Билл Гейтс или тот же Илон Маск, начали паниковать, что ИИ обрекает человечество на гибель, а будущее они видят какой-то антиутопией. Стоит ли воспринимать такие прогнозы всерьез? Честно говоря, я бы не спешил всерьёз пугаться этих заявлений. Стивен Хокинг, безусловно, не является специалистом в области ИИ, как, в общем-то, и Илон Маск.
На другой чаше весов высказывания таких людей, как например, Эндрю Ын — американский учёный в области информатики, доцент Стэнфордского университета, исследователь робототехники и машинного обучения, ведущий специалист лаборатории искусственного интеллекта китайской корпорации Baidu. Ын, говоря о проблеме безопасности ИИ, сравнивает её с проблемой перенаселения Марса — конечно, мы когда-нибудь колонизируем Марс, и тогда, возможно, в какой-то момент там возникнет проблема перенаселения. Но стоит ли заниматься ей сегодня? Марк Цукерберг также довольно скептически отнёсся к заявлениям Маска. «Искусственный интеллект сделает в будущем нашу жизнь лучше, а предсказывать конец света очень безответственно», — заявил он. Лично я думаю, что высказывания Маска стоит рассматривать в прагматическом ключе — Маск хочет застолбить эту тему и в идеале получить от государства средства для её разработки. Неужели все так безоблачно и не о чем беспокоиться? Реальные опасности, связанные с развитием ИИ, лежат, на мой взгляд, совсем в иной плоскости, чем об этом принято думать. Главные риски связаны не с тем, что мы своими создадим «Скайнет», который поработит человечество. Риски от внедрения технологий ИИ и машинного обучения куда более прозаичны. Доверяя решение важных вопросов тем или иным математическим моделям, мы можем пострадать от ошибок, допущенных при их разработке. Искусственный интеллект, воспроизводящий действия людей-экспертов, унаследует их ошибки и предубеждения. Недоработки в системах управления производством или транспортом могут привести к катастрофам. Вмешательство злоумышленников в работу жизненно важных систем в условиях тотальной автоматизации может повлечь опасные последствия. Чем сложнее системы, тем больше в них может быть потенциальных уязвимостей, в том числе связанных со спецификой тех или иных алгоритмов искусственного интеллекта. Безусловно, для управления этими рисками следует создавать законодательную базу, разумные регламенты безопасности, специальные методы для выявления уязвимостей. Одни системы ИИ будут использоваться для контроля других. Возможно, код жизненно важных систем будет обязателен к публикации для независимого аудита. Словом, специалистам в этой сфере предстоит ещё много работы.
Вернуться назад
Искусственный интеллект (ИИ) — тема, которая уже давно не сходит со страниц научно-популярных журналов и постоянно затрагивается в кино и книгах. Чем больше специалисты развивают эту область науки, тем большими мифами она покрывается. Развитие и будущее искусственного интеллекта волнует и тех, кто стоит у руля государства. Не так давно президент РФ Владимир Путин посетил офис Яндекса в день 20-летия компании, где ему объяснили, когда ИИ превзойдет человеческий интеллект. Все, кто хоть немного проникает в суть потенциала искусственного интеллекта, понимают, что оставлять без внимания эту тему нельзя. Это не только важная тема для обсуждения, но и, наверное, одна из самых значимых в контексте будущего.
Что такое искусственный интеллект и чего на самом деле боятся люди, рассказал «Ридусу» специалист по методам машинного обучения Сергей Марков. Как говорил Джон Маккарти, изобретатель термина «искусственный интеллект» в 1956 году, «как только он заработал, никто больше не называет его ИИ». ИИ уже во всю реальность: калькуляторы, Siri, самоуправляемые автомобили и т. д., а в него все равно не верят. Почему так происходит, что люди отрицают существование ИИ? — Главным образом, по причине терминологической путаницы, так как разные люди вкладывают в понятие «искусственный интеллект» совершенно разный смысл.
В науке искусственным интеллектом называют систему, предназначенную для автоматизации решения интеллектуальных задач. В свою очередь, под «интеллектуальной задачей» понимают такую задачу, которую люди решают при помощи своего, естественного интеллекта.
Легко заметить, что такое определение искусственного интеллекта чрезвычайно широко — под него попадает даже обычный калькулятор, т. к. арифметические задачи по сути тоже интеллектуальные, человек решает их при помощи своего интеллекта.
Поэтому внутри понятия «искусственный интеллект» была проведена важная граница, отличающая прикладной или, как ещё говорят, «слабый» искусственный интеллект, предназначенный для решения какой-либо одной интеллектуальной задачи или небольшого их множества, от гипотетического сильного ИИ, также называемого универсальным искусственным интеллектом (англ. — Artificial general intelligence).
Такая система, когда она будет создана, будет способна решать неограниченно широкий круг интеллектуальных задач, подобно интеллекту человека. С этой точки зрения, калькулятор, который способен считать куда быстрее человека, или программа, выигрывающая у человека в шахматы — это прикладной ИИ, гипотетический же сверхразум будущего — сильный ИИ. Когда читаешь про разные открытия и разработки в области ИИ, понимаешь, что все в основном происходит в США или Азии. А как обстоят дела в России? Есть у нас какие-то наработки? — Область компьютерных наук в наши дни интернациональна, многие наши специалисты работают над созданием и совершенствованием различных моделей машинного обучения, в составе как российских, так и международных команд. У нас традиционно сильная математическая и алгоритмическая школа, созданы исследовательские центры мирового уровня как в ведущих вузах, так и в некоторых частных компаниях.
Но давайте говорить начистоту — бюджеты, выделяемые в нашей стране на науку и образование, не идут ни в какое сравнение с научными бюджетами наиболее развитых стран. Доходы бюджета РФ в 2016 году составили около 200 млрд долларов США, в то время, как только на оборону США тратят сумму в три раза большую, чем весь российский бюджет.
Весь бюджет российской науки сопоставим с бюджетом одного лишь вуза из Лиги плюща. В безденежные 90-е страну покинули многие ведущие специалисты, была нарушена преемственность ряда научных школ. Также было практически утрачено собственное производство электроники. В то время, как мировые лидеры ИТ ведут гонку в создании специализированных процессоров для обучения нейронных сетей, нам остаётся лишь сфера разработки алгоритмов и программного обеспечения. Впрочем, и в этой области пами были достигнуты весьма впечатляющие успехи.
Например, команда под руководством Артёма Оганова создала систему USPEX, способную предсказывать кристаллические структуры химических соединений, что привело к настоящей революции в современной химии.
Команда Владимира Махнычева и Виктора Захарова с ВМК МГУ при помощи созданной ими системы, а также суперкомпьютеров Ломоносов и IBM Blue Gene/P, впервые смогла рассчитать 7-фигурные шахматные окончания.
Нейронные сети «Яндекса» распознают и синтезируют речь, генерируют музыку в стиле «Гражданской обороны» и композитора Скрябина. Сильная команда специалистов по ИИ и машинному обучению создана и в «Сбербанке». Словом, заметные успехи есть и у нас в стране. Чем быстрее развиваются технологии искусственного интеллекта, тем сильнее людей захватывает опасение — как быстро они останутся без работы. Все действительно так плохо? По мнению председателя, уже в скором будущем мы столкнемся с ростом безработицы. Но действительно ли роботы «отберут» наши рабочие места и стоит ли беспокоиться по этому поводу рассказал «Ридусу» специалист по машинному обучению Сергей Марков. -Сергей, даже сейчас уже есть «мертвые профессии», которые не требуют человеческого труда, хотя, казалось бы, лет 10 назад никто и не думал, что, например, кондуктора скоро станут ненужными. А какие еще профессии вытеснят технологии? Мы приближаемся к тому времени, когда машины превзойдут людей почти в любом деле. Я считаю, что обществу нужно посмотреть в лицо этой проблеме до того, как она встанет во весь рост. Если машины будут способны делать почти всё, что умеют люди, что тем останется делать? сказал Моше Варди, профессор вычислительной инженерии и директор Института информационных технологий Кена Кеннеди при Университете Райса. Долгое время на пути автоматизации стояли технологические ограничения — машины не могли распознавать образы и речь, не могли говорить, не могли достаточно хорошо понимать смысл высказываний на естественном языке, не имели достаточно данных для того, чтобы научиться многим привычным для человека вещам.
Благодаря последним достижениям в сфере искусственного интеллекта многие из этих ограничений фактически оказались сняты. Кроме того, многие профессии сами претерпели трансформацию, что сделало их более удобными для автоматизации. Например, современный офисный клерк ведёт переписку не в бумажном, а в электронном виде, бухгалтер выполняет проводки не на бумаге, а в бухгалтерской программе, оператор станка управляет станком зачастую не при помощи рукоятей, а при помощи управляющей программы. Поэтому сейчас задача автоматизации во многих профессиях перестала быть научной и стала чисто инженерной. Правда пока что производственная сфера, связанная с ИИ, скорее создаёт рабочие места — нужны специалисты в области машинного обучения и подготовки данных, сотрудники для разметки обучающих массивов, специалисты по внедрению и т. д. Но в какой-то момент электроовцы определённо начнут есть людей, и о последствиях нужно позаботиться уже сейчас. При этом важно понимать, что остановить технический прогресс нельзя, и попытка это сделать обернётся куда более катастрофичными последствиями. — Мы сможем когда-нибудь полностью довериться роботам (ИИ), или все-таки в любом деле должен быть человеческий фактор? У этого вопроса есть несколько аспектов. С одной стороны, люди в прошлом с опаской относились практически к любой технике. Первый лифт, первый автомобиль, первый поезд или самолёт — всё это когда-то было непривычным, и многим казалось опасным. Да во многом опасным и было — техногенные катастрофы унесли немало жизней. И тем не менее в наши дни все эти вещи стали привычными и уже не вызывают сильного страха. В этом смысле — наши потомки будут относиться к системам ИИ более спокойно. Люди порой склонны мистифицировать вещи, которые им непонятны. Дикарь думает, что в паровозе живёт злой дух, а современный обыватель думает, что наши системы ИИ обладают сознанием, хотя это далеко не так. С другой стороны, я не думаю, что универсальные системы ИИ когда-либо станут частью нашей производственной сферы. На мой взгляд будущее скорее за синтетическими системами — то есть за объединением человека и машины в единый организм. В этом смысле искусственным интеллектом будущего будет усовершенствованный человеческий интеллект. Кстати говоря, человеческий интеллект тоже не совсем корректно называть естественным. Ребёнок от рождения не обладает интеллектом, всему его учит общество, родители, окружающая среда. В этом смысле мы с вами все по сути дела «искусственные интеллекты», и наши страхи, связанные с ИИ, во многом являются страхами перед самими собой. Последнее время многие ученые, например, Стивен Хокинг, Билл Гейтс или тот же Илон Маск, начали паниковать, что ИИ обрекает человечество на гибель, а будущее они видят какой-то антиутопией. Стоит ли воспринимать такие прогнозы всерьез? Честно говоря, я бы не спешил всерьёз пугаться этих заявлений. Стивен Хокинг, безусловно, не является специалистом в области ИИ, как, в общем-то, и Илон Маск.
На другой чаше весов высказывания таких людей, как например, Эндрю Ын — американский учёный в области информатики, доцент Стэнфордского университета, исследователь робототехники и машинного обучения, ведущий специалист лаборатории искусственного интеллекта китайской корпорации Baidu. Ын, говоря о проблеме безопасности ИИ, сравнивает её с проблемой перенаселения Марса — конечно, мы когда-нибудь колонизируем Марс, и тогда, возможно, в какой-то момент там возникнет проблема перенаселения. Но стоит ли заниматься ей сегодня? Марк Цукерберг также довольно скептически отнёсся к заявлениям Маска. «Искусственный интеллект сделает в будущем нашу жизнь лучше, а предсказывать конец света очень безответственно», — заявил он. Лично я думаю, что высказывания Маска стоит рассматривать в прагматическом ключе — Маск хочет застолбить эту тему и в идеале получить от государства средства для её разработки. Неужели все так безоблачно и не о чем беспокоиться? Реальные опасности, связанные с развитием ИИ, лежат, на мой взгляд, совсем в иной плоскости, чем об этом принято думать. Главные риски связаны не с тем, что мы своими создадим «Скайнет», который поработит человечество. Риски от внедрения технологий ИИ и машинного обучения куда более прозаичны. Доверяя решение важных вопросов тем или иным математическим моделям, мы можем пострадать от ошибок, допущенных при их разработке. Искусственный интеллект, воспроизводящий действия людей-экспертов, унаследует их ошибки и предубеждения. Недоработки в системах управления производством или транспортом могут привести к катастрофам. Вмешательство злоумышленников в работу жизненно важных систем в условиях тотальной автоматизации может повлечь опасные последствия. Чем сложнее системы, тем больше в них может быть потенциальных уязвимостей, в том числе связанных со спецификой тех или иных алгоритмов искусственного интеллекта. Безусловно, для управления этими рисками следует создавать законодательную базу, разумные регламенты безопасности, специальные методы для выявления уязвимостей. Одни системы ИИ будут использоваться для контроля других. Возможно, код жизненно важных систем будет обязателен к публикации для независимого аудита. Словом, специалистам в этой сфере предстоит ещё много работы.
Вернуться назад